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EVALUATING ERS-1 ICE MOTION AND CLASSIFICATION PRODUCTS

F. Fetterer!, D. Gineris2

93-17292

1 Remote Sensing Applications Branch, Naval Research Laboratory DET,
Stennis Space Center, MS 39520 2 Sverdrup Technology, Stennis Space Center, MS

ABSTRACT

ERS-1 Synthetic Aperture Radar (SAR) imagery from the Alaska
SAR Facility is available to operational ice analysts at the Joint Ice
Center. Analysts can use the imagery directly through manual
interpretation. One such use would be to provide information on
ice conditions for a field expedition. In addition, analysts can run
automated algorithms which produce estimates of ice type and ice
motion from SAR images. Such automated analysis will become

increasingly important if SAR is to be used to improve .

climatologies of ice characteristics and to improve the performance
of dynamic ice models. Here the ice classification and ice motion
algorithms developed by the Jet Propulsion Laboratory for ERS-1
SAR imagery arc evaluated and results presented.
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1. INTRODUCTION
.1 Objectives

Through a cooperative agreement between the European Space
Agency, the National Aeronautics and Space Administration, and
the National Oceanic and Atmospheric Administration, the Joint
Ice Center in the United States has access to ERS-1 data from the
Alaska SAR Facility (ASF). We have assembled software tools
and a data base of satellite imagery with which to evaluate
synthetic aperture radar (SAR) image products and to improve the
operational usefulness of imagery and products. Some
applications for SAR data, such as using ice deformation ficlds
from SAR to update ice prediction models, require further
development before they can be implemented operationally.
Others, such as using ice type maps from SAR to improve the
accur'cy of arctic-wide ice analyses, are ready now.

In general, operational usefulness depends on the timeliness with
which a SAR image can be obtained and analyzed for a desired
area, the nccurncr of. the result, and the ease with which the
product can be relayed to the user. ASF can process SAR data
within 6 hours of the satellite pass using predicted orbilal elements
when necessary. Imagery requested for operational use is
displayed on a SAR worksiation consisting of a SUN computer
and peripherals, The analyst can create an output product by
manually interpreting an image, or can run llﬁorithms to
automatically produce an Ice type map or ice motion vectors.
These algorithms, which were developed by the Jet Propulsion
Laboratory (JPL), are identical (at this writing) to those which

create products at ASF. Here we assess the accuiacy of the ice
classification product, and compare the ice motion product with
other sources of ice drift information. This work is part of a larger
program which has as its objective the more efficicnt use of SAR
data for polar applications.

1.2 Data Set

ERS-1 SAR imagery of the Beaufort Sea, Chukchi Sea, East
Siberian Sea and Central Arctic from March and early April 1992
was selected. We chose this time period because of the availability
of coincident satcllite visible, infrared, and passive microwave
data, and because of the availability of surface validation from the
Beaufort Sea Leadex experiment. Figure 1 shows the coverage of
the 5 satellite passes from which sixty 100 km-square images were
chosen for the assessment of the classification algorithm. Air
temperature analyses from the Fleet Numerical Oceanography
Center show temperatures well below freezing for the regions
covered by these passes.

Figure 1. SAR passes selected for evaluation.

2, CLASSIFICATION
2.1 Algorithm Description

The ice classification algorithm relies on a priori knowledge of
backscatter distributions for ice types. Because the algorithm uses
low resolution (240 m) multiple fook data, the effect of "speckie”
or multiplicative noise need not be accommodated. Backscatter
measurements obtained by sampling a small portion of a calibrated
image are clustered. The cluster with the most members is labeled
by referring to a lonk-up table (LUT) of empirically derived
backscatter distributions for multiyear (MY) ice (with mean of -10
dB), two classes of first year (FY) ice (a "dork" FY with
backscatter of -17 dB, and “bright" FY with backscatter of -14
dB), and new ice or smooth open water (for the winter algorithm).
s
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Fhe centroid of this cluster is then used for maximum likelihood or
minimnm distance image pixel classification. The centroids for the
other ice types are found simply by using the expected difference
between the mean backscatter for these types and the primary type.
For a full description, see Ref, 1. The algorithm accommodates a
certain amount of variability in the mean backscatter of the
dominant type by labeling it according to the LUT type it is closest
to, and shifting all other type centroids accordingly. However,
natural variability in backscatter for ice types and variability in the
difference in mean backscatter between types introduces error.

2.2 Algorithm Performance

Classification performance is evaluated by comparing the ice type
composition of an image produced by the unsupervised
classification algorithm with that produced by supervised
classification using training scts. The uscr has the option of
choosing minimum distance or maximum likelihood classification
for cither supervised or unsupervised classification. Both work
equally well for supervised classification, reflecting similarly
shaped distributions of FY and MY ice in our data set. Scene
classification with maximum likelihood takes about § minutes,
while minimum distance takes half as long. For unsupervised
classification, maximum likelihood performs significantly better in
most scenes. The minimum distance classifier noticeably
overestimated the percentage of FY ice when MY makes up more
than about 80% of the image, because it misclassifies relatively
dark pixels within MY floes as FY ice,

Figure 2 shows a comparison of maximum likelihood supervised
classification with unsupervised maximum likelihood algorithm
classification for MY and FY ice. Each data point is the
percentage of MY or FY ice which results from classifying an
image using both methods. If supervised classification is regarded
as completely accurate, algorithm error can be expressed as the
percent difference in concentration given by the two methods
{Table 1). Mean difference is probably a good measure of error
for MY ice, since the algorithm has a bias toward overestimating
MY ice (Fig. 2, top), while the standard deviation of the
differences may be a better measure for FY ice, since points are
distributed on both sides of the "no error” line (Fig. 2, bottom). If
only cases where the percentage of MY is greater than 60% are
considered, the error for MY drops to 4% with standard deviation
of 4%, while that fu. FY drops to 4% with standard deviation of
5%. These errors appear random over the time period and range
of latitudes covered by the images.

Table 1. Difference in supervised and unsupervised classification
concentrations for all images classified.

Surface Mean Standard
Deviation
MY 8% 12%
Bright FY 8% 10%
Dark FY 8% 14%
All FY 8% 12%

The outlying points in Figure 2 deserve some discussion. FY ice
in the fast ice shear zone north of Alaska is classified as MY in 2
scencs because of its bright signature, causing 2 outlying points in
Figure 2 (1op) with concentration values from supervised
classification of about 10%,. The same scenes have corresponding
outlying poinis in Figure 2 (bottom). The algorithim's specified
domain hegins north of this zone. Two outlying points in Figure
2 (top) with concentration values of (% MY from supervised
classification and 60% MY from the algorithin are from scences at
the southern end of the 15 April pass (Fig. 1Y FY ice in these
scencs has unusunlly bright mean backscatter of -11.2 dB. A
darker FY t{pc in thexe scenes Is -15.0 dB, while MY from scenes
further north is -8.9 dB.

2.3 Backscatter Variability -

Supervised clussification provides a measure of the backscatter of
the ice samples used for training sets. The mean backscatter
values obtained for ice types using 390 samples from 60 images
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Figure 2. (Top) The concentration of multiyvear (MY) ice arrived
at through supervised classification versus that | rnduced by the
automated algorithm. (Bottom) As above, for first-year (FY) ice.

agreed well (within 0.3 dB for MY and 0.7 dB for FY) with those
used by the JPL algorithm. Plots of backscatter versus latitude
show interesting variation for both FY and MY ice (Fig 3. A
second-order polynamial is fitted to the data. One unanticipated
result of backscatter measurements from a supplementary data set
over the Leadex camp was that the backscatter of FY ice in §
descending passes was, on average, about 1 dB} greater than that
of the same ice in 5 ascending passes. We ascribe this to scatter
from ridges in the FY ice, which appear to be oriented
predominantly in the along-track direction for descending passes.

Most scenes in the data set had little or no open water or new ice,
While FY anrl MY ice is reliably classified with a small error,
wind-roughened water is classified as MY lce, and the backscatter
sipnature of ice in freczing leads may mimic that of FY or MY ice.
In genernl, however, experience with the classification algorithm
showed that it satisfactorily classifies most images in spite of sonw
variability in the mean buckscatter of classes from image to image
Variability in the mean backscatter difference between clasaes from
hmnge to fmage has not been evaluated.  Future work involves
calculating the theoretical misclassification by the algorithm given
the measured backscotter distributions, and evaluating seasonal
and repional varintion in backscatter from ice and its effect on
algorithm performance.
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Figure 3. Backscatter of MY (top) and FY (bottom) ice as a
function of latitude. Backscatter samples are drawn from the 60
images for which supervised classification was performed.

3. ICE MOTION
.1 Algorithm Evaluation

i he ice motion algorithm developed by JPL uses an area based
vross-correlation and feature tracking method to produce motion
“ectors on a5 kmogrid. Typically, two 100 km-square images
weparated in time by Vdays are submitted to the algorithm. The
wer selects the images 1o insure that some of the same floes or
features are present in both. The algorithm makes use of filters to
climinate vectors with a low probability of being correct. Tn
several of the image pairs evaluated, these filters were not
successful in eliminating a few obviously erroneous vectors from
about the image edges. The algorithm is fully described in Ref. 2.

To evaluate the algorithm, ice motion products were compared
with ice motion vectors from an operational ice prediction model
(the Polar Ice Prediction System or PIPS, Ref. 3.) and with
vectors from satellite infrared data. Five pairs of SAR images
were selected. Five corresponding pairs of satellite images from
the Advanced Very High Resolution Radiometer (AVHRR) were
submitted to a cross-correlation algorithm which produces vectors
on a 10 km grid (Ref 4). The acquisition time for thc SAR images
led that of the AVHRR images by about 8 hours. Motion vectors
from PIPS are available on a grid with spacing of about 45 km,
PIPS vectors are 24-hour forecasts. Vectors from forecasts for
the 3 days corresponding to the SAR motion pairs were averaged.
The averages of all the vectors from PIPS, AVHRR, and SAR in
the area covered by the SAR vectors are preserted in Table 2.
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Table 2. Ice motion from SAR compared w ith thut /-0 1 AVHRR
and an operational model (PIPS). Motion direcn. 1 was not
obtained from PIPS. All image pairs or mode! runs are trom dates
in March, 1992.

Image SAR SAR AVHRR AVHRR PIPS
pair dates (km/day) (direction) (km/day) (directiom) (kim/day)
26,29 1.5 149° 1.2 169° 2.3
26,29 1.7 Ay 0.2 50° 2.2
24,26 9.9 37° 4.0 ne 10.7
24,27 2.8 318° 1.7 315° 49
24.29 1.9 318° 0.4 20° 1.7

3.2 Discussion

The accuracy of maotion vectors from satellite data depends on
accurate geolocation of the satellite data, and on the accurate
location of identical features in sequential imayery by an
algorithm. Because SAR data are geolocated to withm a few 100
meters. and because SAR combines high resolution with good
discrimination of tloes, the superior accuracy of motion vectors
from SAR is not in qquestion. In contrast, AVHRR images have a
resolution which var s frons about T ki at nadir to about 4 km at
swath edge. In the rnages used here, the coast of Alaska was
otten cloudy. whict vrevented checking the geolocation of the
imagery with the contline. In o larger AVHRR data et acquired
for the Leadex experniment, AVHRR images had to be shifted an
average of 4 km to match the coast.  If the averace error
AVHRR geolocation is taken as 4 kmy, this lewds o a inadimeon oo
velocity error of 3.8 km/day over a three-day period  Ertorsn
AVHRR geolocation, therefore. can account for the ditferences in
the magnitude of velocity between AVHRR and SAR vectors in
Table 2.

The magnitude of velocity from the PIPS model is consistently
greater than that frorn SAR. PIPS vectors depend to a large extent
upon the input wind ficid. By providing a method of quantifying
deformation and shear, SAR data can potentially modify this
dependence.

4. CONCLUSIONS

The wintertime ice classification product is accurite to within
about 10% when compared to the results of supervised
classification using training sets. Much of the error is due to
misclassification of a few images with unusually bright FY ice.
Improved accuracy will come through better defimition of the
seasonal and regional domain of the algorithm. The small
standard deviation of the algorithm when anomalous cases are
excluded implies that algorithm accuracy can be improved by
adjusting a priori ice type distributions.

The SAR motion product resolves shear and deformation missed
by an operational madel and coarser resolution satellite data.
However, it is sometmes ditficult to find image pair . analysis,
especially when ice 1s moving rapidly. The mation pr.duct will be
most useful operationally when used to validate o update e
models. which show motion over a larger fiel)
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